Loading...
机构名称:
¥ 2.0

摘要 - 在视觉场景理解的领域,深层神经网络在各种核心任务(例如细分,跟踪和检测)方面取得了令人印象深刻的进步。但是,大多数方法都基于封闭式假设,这意味着该模型只能识别培训集中存在的预定类别。最近,由于视觉语言预训练的快速进步,开发了开放的词汇环境。这些新方法旨在定位和识别带注释的标签空间以外的类别。与弱监督和零拍的设置相比,开放的词汇方法更一般,实用和有效。本文彻底回顾了开放式学习,总结和分析了该领域的最新发展。特别是,我们首先将开放性词汇学习与类似的概念并置,例如零拍学习,开放式识别和分布外检测。随后,我们检查了分割和检测领域内的几个相关任务,涵盖了长尾问题,很少射击和零照片设置。作为我们方法调查的基础,我们首先阐明了在近距离场景中的检测和分割的基本原理。接下来,我们研究了采用开放词汇学习的各种环境,这些环境指出了反复出现的设计元素和中心主题。这是对常用数据集和基准中最新检测和分割方法的比较分析。我们的

迈向开放词汇学习:调查| dr-ntu

迈向开放词汇学习:调查| dr-ntuPDF文件第1页

迈向开放词汇学习:调查| dr-ntuPDF文件第2页

迈向开放词汇学习:调查| dr-ntuPDF文件第3页

迈向开放词汇学习:调查| dr-ntuPDF文件第4页

迈向开放词汇学习:调查| dr-ntuPDF文件第5页

相关文件推荐